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The present paper is devoted mainly to the half space problem for stationary
Boltzmann-type equations. Using only conservation laws and the Boltzmann
H-theorem we derive an inequality for unknown constant fluxes of mass, energy,
and momentum. This inequality is expressed in terms of three parameters
(pressure p, temperature T and the Mach number M ) of the asymptotic
Maxwellian at infinity. Geometrically the inequality describes a ``physical''
domain with positive entropy production in the 3-d space of the parameters.
The domain appears to be qualitatively different for evaporation and condensa-
tion problems. We show that for given M, the curve p= p(M ), T=T (M ) of
maximal entropy production practically coincides with the experimental
evaporation curve obtained by Sone et al. on the basis of numerical solutions
of BGK equation. Similar consideration for the condensation problem is also in
qualitative agreement with known numerical results.

KEY WORDS: Boltzmann equation; BGK-model; entropy; evaporation�
condensation problem; convex functional; asymptotic Maxwellian.

1. INTRODUCTION

The concept of entropy plays a central role in the thermodynamics of
irreversible processes. However, for a majority of practically interesting
systems of statistical physics we know not very much about strongly non-
equilibrium states of such systems. A remarkable exception is a dilute gas
(or plasma) for which one can use so powerful tool as the Boltzmann-type
kinetic equation for a distribution function f (x, v, t) (x, v and t denote
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respectively position, velocity and time variables). Unfortunately, this non-
linear multidimensional equation is rather complicated and therefore it can
be solved only numerically for spatially inhomogeneous problems having
physical interest. On the other hand, the Boltzmann-type equation implies
the famous inequality for H-function (entropy with the minus sign):

�H
�t

+div 9�0

where

H(x, t)=|
R 3

dv f (x, v, t) log f (x, v, t)

9(x, t)=|
R 3

dv vf (x, v, t) log f (x, v, t)

This inequality can be considered as the main inequality of the thermo-
dynamics of rarefied gas. We note that the entropy inequality is much
weaker, however much more general, than the Boltzmann equation itself.
It has obvious generalisations to mixtures, gases with internal degrees of
freedom, etc. Moreover, it does not depend on external or self-consistent
forces F(x, v, t) (provided divv F=0) and on particular form of the collision
integral.

The aim of the present paper is to show that the entropy inequality
can be successfully used for qualitative and quantitative estimates of
strongly nonequilibrium steady states of a rarefied gas, without solving the
Boltzmann equation. In this paper, we restrict our consideration to the
plane evaporation�condensation problem (mostly in the half-space). This
problem was previously studied by many authors (see ref. 1 for a review,
this paper contains 55 related references). In particular, a very detailed
numerical study was performed by Sone, Aoki and their collaborators. As
we shall see below, some of the numerical results can be obtained with a
good accuracy on the basis of the entropy inequality.

The paper is organised as follows. In Section 2 we discuss a statement
of the evaporation�condensation problem and give a very short review of
known results. Then we explain an idea of applying the entropy inequality
to the problem of estimates of unknown parameters of asymptotic
Maxwellian. The estimates are based on a simple generalisation of well-
known properties of H-function (Lemma 1) and on representation of the
entropy flux as a difference of two convex functionals (Section 3).

One of the functionals is given by boundary conditions, whereas the
other one is estimated below in Section 4. Combining the results of
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Sections 3�4, we prove in Section 5 our main inequalities for the unknown
parameters of asymptotic Maxwellians in the half-space and in a slab.
Then, in Section 6, we consider the half-space inequality in variables p
(pressure), T (temperature) and M (Mach number). The inequality describes
a ``physical'' domain of positive entropy production in the three dimen-
sional space of the parameters. The domain appears to be qualitatively
different for evaporation and condensation problems. In particular, it has
a shape of closed narrow ``pipe'' for the evaporation problem. The curve of
maximal (for given M ) entropy production inside this ``pipe'' is in surprising
agreement with the famous evaporation curve obtained by Sone et al. on
the basis of numerical solutions of BGK equation. For the condensation
problem, we have constructed the surface of maximal (for given M and p)
entropy production and show that this surface is also very similar (at least
qualitatively) to the well-known evaporation surface obtained by numerical
methods (see ref. 1 for details). These and other concrete results are presented
in Section 6.

2. STATEMENT OF THE PROBLEM AND MOTIVATION

Let f (x, v) be a non-negative solution of the stationary plane problem
for the Boltzmann-type kinetic equation

vx
�f
�x

=Q( f, f ), x # R+ , v # R3 (1)

with given distribution of incoming particles at x=0

f (0, v)=.+(v), vx>0 (2)

One more boundary condition is stated at x=L, L>0,

f (L, v)=.&(&v), vx<0 (3)

In the asymptotic case L � � (half-space problem) we can demand
the solution to be bounded at infinity. This means, roughly speaking, that

f (x, v) � M(\, u, T )=\(2?T )&3�2 exp _&
(u&v)2

2T & (4)

with certain \>0, T>0, u # R3, provided the three parameter family of
Maxwellians M(\, u, T ) represents the whole class of non-negative (equi-
librium) solutions to the equation Q( f, f )=0.
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Our aim is to present some very general estimates for functions satisfying
the equation (1) and boundary conditions (2), (3) or (2), (4). The term ``very
general'' means that we are not going to use any information concerning
the operator Q( f, f ) except (a) conservation laws:

|
R 3

dv �(v) Q( f, f )=0 if �=vx , vy , vz , 1, |v|2 (5)

and (b) H-theorem

|
R 3

dv[log f (v)] Q( f, f )�0 (6)

The properties (a) and (b) are valid for Boltzmann's and Landau's
equations, BGK-model, etc. For the sake of simplicity we assume also that
there exists a class of solutions satisfying the symmetry condition

f (x, v)= f (x, vx , r2), r2=v2
y+v2

z (7)

and consider such functions only.
The corresponding class of Maxwellians consists of functions

M(\, u, T )=\(2?T )&3�2 exp _&
(vx&u)2+r2

2T & (8)

where all the three parameters \, T # R+ , u # R are real numbers.
It is obvious that two main properties of f (x, v) follow from Eqs. (5)

and (6).

(A) There exist three numbers L1 , L2 , L3 such that

1 L1

|
R3

dv f (x, v) vx { vx =={L2= (9)

|v|2 L3

(B)

9[ f (x1 , } )]�9[ f (x2 , } )] if x1�x2 (10)

where

9[ f ]=|
R 3

dv vx f (v) log f (v) (11)

Combining (A) with (4), (8), we obtain usual relations

L1=\u, L2=\(u2+T ), L3=\u(u2+5T ) (12)
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Using the physics terminology, we can say that we consider the
evaporation�condensation problem.

The terminology becomes clear if we assume that the plane x=0 is the
boundary between liquid (x<0) and gas (x>0) phases. The liquid phase
is described very roughly by the boundary condition (2) at x=0, whereas
the gas phase (x>0) is described by the kinetic equation (1). Parameters
(\, u, T ) represent density, bulk velocity and temperature respectively. The
functional [&9( f )] is the entropy flux, whereas L1, 2, 3 are proportional to
fluxes of mass, momentum and energy respectively. We speak about
evaporation (of the liquid) if the fluxes of mass and energy are positive
(u>0) and condensation (of the gas into liquid) otherwise (u<0). The
plane half-space problem arises naturally as a nonlinear boundary layer
problem in the neighbourhood of evaporating surface in R3. Solutions to
this problem define correct boundary conditions (at such surfaces) for the
hydrodynamic equations.

Let us formulate now the specific problem we are going to study
below. Note that each solution of the above stated boundary value
problems implies the existence of three numbers L1 , L2 , L3 . The numbers,
however, are not known in advance. In case of finite interval (boundary
conditions (2), (3)), the numbers are certain functionals L:(.+ , .&),
:=1, 2, 3, on functions .\(v). In case of the half-space problem, the fluxes
L: are directly connected by Eq. (12) with parameters (\, u, T ) which are
also not necessary known (for brevity we omit a discussion of well-known
peculiarities of the half-space problem for various cases of sub(super)sonic
evaporation�condensation, see e.g., ref. 1).

There is a large number of publications on this topic based on numeri-
cal computations for the Boltzmann equation or the BGK model (see ref. 1
for a review). For example, we set

.+=a+ exp[&b+ |v|2] (13)

and study the half-space problem. That gives some ``experimental'' (in the
sense of the computer experiment) knowledge of parameters (\, u, T ) at
infinity. A detailed investigation of the problem was done by Sone et al.(1, 2)

The authors presented their results in the 3-d space of parameters ( p, M, T )
such that

p= pT, M2=3u2�(5T ), T=T, c2=
5T
3

(14)

(it is sufficient for many molecular models to consider the case a+=1,
b+=1). They have obtained: (a) a curve for sub-sonic evaporation
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(0<u<c); (b) a surface for sub-sonic condensation (&c<u<0); and (c)
a 3d domain for supersonic condensation (u<&c). The qualitative dif-
ference between cases (a), (b), (c) was explained long ago (see, for example,
ref. 3) on the basis of the linearised Boltzmann equation. A recent discus-
sion on transonic condensation(4) is interesting, but concerns only the case
Mr1. Many interesting numerical results can be found also for the finite
interval problem.(5) Moreover, the first rigorous results concerning the
existence of solutions to the problems (1)�(4) for the Boltzmann equation
in the strongly nonlinear case were recently obtained by Arkeryd and
Nouri.(6)

In the following, we derive some inequalities which impose certain
restrictions on parameters L1, 2, 3 or \, u, T for given functions .\(v). The
inequalities are rough enough since they use only general properties
(9)�(10). They are however useful because of their rigorousity and
generality.

3. GENERALISED H-FUNCTIONAL AND DECOMPOSITION OF
THE ENTROPY FLUX

We consider first a straightforward generalisation of well-known
properties of the Boltzmann's H-functional. Let g(v)�0, v # R3, be a fixed
locally integrable function. We introduce the functional acting on v-variable

Hg( f )=|
R 3

dv g(v) f (v) log f (v) (15)

and moments

+0=|
R 3

dv g(v) f (v), +1=|
R3

dv g(v) f (v) v

(15a)

+2=|
R 3

dv g(v) f (v) |v|2

where +0, 2>0, +1 # R3.

Lemma 1. Let f (v) be a function such that the integrals Hg( f ) and
moments (15a) are finite. We assume that there exists a Maxwellian

fM(v)=A exp[&; |v|2&# } v], A, ;�0, # # R3 (16)

having the same moments (15a). Then
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(i) the Maxwellian is defined uniquely and

(ii) satisfies the inequality

Hg( fM)�Hg( f ) (17)

Proof. It is obvious that

Hg( f )&Hg( fM)=|
R 3

dv g(v) _ f (v) log
f (v)
fM(v)

&( f (v)& fM(v))&�0 (18)

since y log( y�x)&( y&x)�0 for any positive x, y.
Thus, (ii) is proved. To prove (i), we assume that there exist two dif-

ferent Maxwellians f (1, 2)
M (v) with the same moments (15a). Then Hg( f (1)

M )
=Hg( f (2)

M ) because of (ii). Therefore

f (1)
M log

f (1)
M

f (2)
M

= f (1)
M & f (2)

M

on a set of positive measure in R3 where g(v)>0. Hence, f (1)
M = f (2)

M for all
v # R3 and the proof is completed. K

Both assertions (i) and (ii) are wrong if we do not assume that
g(v)�0. In particular, we obtain (in the general case) two Maxwellians
(sub- and supersonic) for g(v)=vx .

Let us now return to the boundary value problems (1)�(4). In accor-
dance with (10), we have a monotone functional (11). The functional,
however, is not convex and does not satisfy the above lemma. In order to
apply Lemma 1, we decompose f (v) onto two parts f \(v): R3

+ � R+ such
that

f \(v)= f (\v) if v # R3
+=[v # R3, vx>0] (19)

(The plane vx=0 is irrelevant for our goals). The functional (11) can be
written as difference of two convex functionals (or two values of the same
convex functional)

9( f )=9+( f +)&9+( f &), 9+( f )=|
R

3
+

dv vx f log f (20)

Note that 9+( f )=Hg( f ) where Hg( f ) is defined by Eq. (15) with the
weight function

g(v)=vx if vx>0, g(v)=0 otherwise
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Therefore 9+( f ) satisfies conditions of Lemma 1 (we always imply, if
necessary, a trivial extension of f \(v) to the whole space R3 such that
f \(v)=0 if vx�0).

We denote

1 m\
1

|
R

3
+

dv f \(v) vx { vx =={m\
2 = (21)

|v|2 m\
3

for functions f (v) satisfying (7) and explain a simple idea of applying
Lemma 1 to boundary value problems (1)�(4). Let us, for example,
consider the half-space problem (1), (2), (4). Combining Eqs. (2), (4), (10),
(20), we obtain

9+(.+)&9+[ f &(0, } )]�9(M ) (22)

where

9(M )=\u log[\(2?eT )&3�2] (23)

The function f &(0, v) is unknown. However, we can express its
moments m1, 2, 3 through the same moments m+

1, 2, 3 of the function .+(v)
and through (\, u, T ) by using Eqs. (9), (12). Hence, we obtain

m+
1 &m&

1 =\u, m+
2 +m&

2 =\(u2+T )
(24)

m+
3 &m&

3 =\u(u2+5T )

On the other hand, Lemma 1 leads to the inequality

9+[ f &(0, } )]�9+[ f &
M] (25)

where the right-hand side can be expressed as certain function (see below
its specific form) of the three moments m&

1, 2, 3 . Then we substitute Eq. (24)
and finally obtain the inequality which directly connects the parameters
(\, u, T ) at infinity with the boundary condition (2) at x=0. To derive
such inequalities in (almost) explicit form, we first study in the next section
the lower estimates for 9+( f ) in more detail.
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4. AUXILIARY PROBLEM

We consider the following

Problem. Let (z, r, .) denote cylindrical coordinates in R3, f (z, r)
�0 be an auxiliary symmetric function defined on the half-space z>0.
Find

F(m1 , m2 , m3)=Min 9+( f ) (26)

where

m1 z

{m2==2? |
�

0
dz |

�

0
dr rf (z, r) { z2 = (27)

m3 z(z2+r2)

9+( f )=2? |
�

0
dz |

�

0
dr rzf (z, r) log f (z, r) (28)

Solution. Following Lemma 1, we first construct the Maxwellian

fM(z, r)=
a;3

?
exp[&;2(z&w)2&;2r2] (29)

with parameters (a, ;, w) satisfying (27) for f = fM . The second step is to
evaluate F(m1 , m2 , m3)=9+( fM).

Substituting (29) into (27), we obtain three equations for (a, ;, w)

mn=
a
;n [In(;w)+$n3I1(;w)]

(30)

In(s)=|
�

0
dz zn exp[&(z&s)2], n=1, 2, 3

Their solution can be expressed in parametric form

a=
m2

1

m2

I2(s)
I 2

1(s)
, ;=

m1

m2

I2(s)
I1(s)

, w=
m2

m1

sI1(s)
I2(s)

(31)

where the parameter s # (&�, �) is a solution of the equation

m1 m3

m2
2

=
I1(s)[I1(s)+I3(s)]

I 2
2(s)

(32)
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To apply Lemma 1, we need to prove that Eq. (32) has a solution
for any given number (m1m3 �m2

2)>1. Then three numbers (a, ;, w) are
uniquely defined (Lemma 1, (i)).

We note that the function

8(s)=
I1(s)[I1(s)+I3(s)]

I 2
2(s)

(33)

is continuous on (&�, �). Moreover,

In(s)&sn+1 |
�

0
dz e&s2(z&1)2

&- ? sn, s � �

therefore 8(s) � 1 as s � �. On the other hand,

In(s)=|s|n+1 |
�

1
dz(z&1)n e&s2z 2

, s<0 (34)

By usual asymptotic consideration, we obtain

In(s)=|s| n+1 e&s 2 |
�

0
dt e&s2t (- 1+t &1)n

2 - 1+t

r2&(n+1) |s| n+1 e&s2 |
�

0
dt tne&s 2t

=n! (2 |s| )&(n+1) e&s2
, s � &� (35)

Hence

8(s)r
I 2

1(s)
I 2

2(s)
rs2 � �, s � &� (36)

and therefore the continuous function 8(s) attains all values on (1, �).
Hence, the equation has a root s for any (m, m3 �m2

2)>1. Moreover, the
root is unique since s=;w for uniquely defined (Lemma 1, (i)) numbers ;
and w.

Unfortunately, the parameter s cannot be expressed explicitly through
{=m1m3 �m2

2>1. One can construct, however, asymptotic formulae by
using asymptotic expansions for I1, 2, 3(s). If s>0, then
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In(s)=|
�

&s
dz(z+s)n e&z 2

=|
�

&�
dz(z+s)n e&z2

&|
�

s
dz(s&z)n e&z 2

= :
[n�2]

k=0
\ n

2k+ sn&2k |
�

&�
dz z2ke&z2

+(&1)n+1 sn+1 |
�

1
dz(z&1) e&s2z 2

=(&1)n+1 In(&s)+- ? :
[n�2]

k=0
\ n

2k+
(2k&1)!!

2k sn&2k (37)

where (&1)!!#1 by definition. The first integral was already studied above
(Eqs. (34), (35)). Therefore we obtain

I1(s)=- ? s+O(s&2e&s2
), s � �

I2(s)=- ? s2(1+ 3
2 s&2)+O(s&3e&s2

) (38)

I3(s)=- ? s3(1+ 9
2 s&2)+O(s&4e&s2

)

and

8(s)&1+
3

2s2 , s � � (39)

Hence, asymptotic values of the root s of the equation (32) are

s&�3
2 \

m1m3

m2
2

&1+
&1�2

if
m1m3

m2
2

� 1

s& &\m1 m3

m2
2 +

1�2

if
m1m3

m2
2

� � (40)

It is clear also that s depends on m1 m3 �m2
2 monotonically. Thus, the

first part of the problem is solved and the properties of the solution are
clarified.

Now we need to construct the function (26), i.e.,

F(m1 , m2 , m3)=9+( fM)=2? |
�

0
dz |

�

0
dr rzfM(r, z) log fM(r, z)
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Noting that

log fM=log
a;3

?
&;2(z2+r2+w2&2zw), ;w=s

we obtain

F(m1 , m2 , m3)=m1 \log
a;3

?
&s2++2s;m2+;2m3 (41)

where a and ; are defined through s by Eq. (31). Sometimes it is more
convenient to use slowly varying (for s>0) functions In(s) instead of s. To
this goal we use the explicit formula

F(m1 , m2 , m3)=m1 log
a;3

?
&

a
;

F1(s)

F1(s)=;4 |
�

0
dz z |

�

0
dt[;2t+(;z&s)2] e&;2t&(;z&s)2

=|
�

&s
dz(z+s)(1+z2) e&z2

On the other hand,

a=;
m1

I1(s)
, I1(s)=|

�

&s
dz(z+s) e&z 2

in accordance with (31). Therefore

F(m1 , m2 , m3)=m1 _log
a;3

?
&1&%(s)& (42)

where

%(s)=
��

&s d+ z2

��
&s d+

=(z2), d+=(z+s)+ e&z2 dz (43)

The function %(s) is monotone on s # (&�, �) as one can verify by
differentiation. Its typical values are:

%(0)=1, %(s � �) � 1
2 , %(s � &�)rs2 � � (44)
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Finally, we note that (see Eqs. (31), (32))

a;3=
m5

1

m4
2

I 4
2

I 5
1

=
1
I1

m5
1

m4
2 \

m2
2

m1 m3+
2

\1+
I3

I1+
2

=
m3

1

m2
2

1
I1 \1+

I3

I1+
2

(45)

and present two ``compact'' formulae for F(m1 , m2 , m3) expressed through
In(s):

F(m1 , m2 , m3)=m1 log _m3
1(1+I3�I1)2

?em2
3I1

e&%(s)&=m1 log _ m5
1I 4

2

?em4
2I 5

1

e&%(s)&
(46)

where all notations are defined by Eqs. (30), (32), (43). The practically
convenient equalities (46) for F(m1 , m2 , m3) complete the solution of the
problem stated at the beginning of this section.

5. ESTIMATES OF THE ENTROPY FLUX

We begin with obvious

Lemma 2. Assume that three moments

1 L1

|
R 3

dv f (v) vx { vx =={L2= (47)

|v|2 L3

of non-negative function f (v): R3 � R+ are given. Moreover one of two
functions .\(v): R3

+ � R+

.+(v)= f (v) if vx>0
(48)

.&(&v)= f (v) if vx<0

is also given, and

|
R

3
+

dv vx.\(v)[1+|v| 2 |log .\(v)|]<� (49)

Then the following inequalities are valid for the functional 9( f ) (11):

9( f )�9+(.+)&F(m+
1 &L1 , L2&m+

2 , m+
3 &L3)

(50)
9( f )�F(L1+m&

1 , L2&m&
2 , L3+m&

3 )&9+(.&)

where 9+ and F are defined by Eqs. (20), (46), m\
1, 2, 3 are given by

equalities similar to Eq. (21).
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Proof. It is already given in Section 3 (see inequalities (22), (25)),
the only new element is the explicit expression (46) for F(m1 , m2 , m3)
defined by Eq. (26). K

It is clear that Lemma 2 can be directly applied to the problem (1)�(3)
(in a slab) in order to estimate unknown constant fluxes L1 , L2 , L3 (9)
through given functions (2) and (3). To this goal, it is enough to combine
the first and the second inequalities (50) at x=0 and x=L respectively
with the H-theorem (10). Thus we obtain

F(L1+m&
1 , L2&m&

2 , L3+m&
3 )&9+(.&)

�9+(.+)&F(m+
1 &L1 , L2&m+

2 , m+
3 &L3) (51)

This inequality is valid for arbitrary width L of the slab. One can find
one more inequality by considering the hydrodynamic limit L � � (or,
equivalently, the mean free path tends to zero whereas L is fixed). In such
a case we assume that the asymptotic solution consists of two boundary
layers at x=0 and x=L and the intermediate constant Maxwellian with
parameters (\, u, T ) satisfying (12). Then

9(M )=\u log _ \
(2?eT )3�2& (52)

and, by using again the H-theorem (10), and the inequality (51), we obtain
two inequalities for unknown parameters (\, u, T ):

F(L1+m&
1 , L2&m2 , L3+m&

3 )&9+(.&)

�9(M )�9+(.+)&F(m+
1 &L1 , L2&m+

2 , m+
3 &L3) (53)

where L1, 2, 3 are expressed by Eq. (12).
Finally, we note that the parameters (\, u, T ) of the Maxwellian at

infinity in the half-space problem (1), (2), (4) obviously satisfy the second
inequality (53), i.e.,

9(M )+F(m+
1 &L1 , L2&m+

2 , m+
3 &L3)�9+(.+) (54)

with L1, 2, 3 given by Eq. (12).
Thus, we have proven the following

Theorem. We consider the boundary value problems (1)�(4) and
assume that: (a) the operator Q( f, f ) satisfies conservation laws (5)
and H-theorem (6); (b) the boundary functions .\ : R3

+ � R+ in (2), (3)
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satisfy (49); for each of the two boundary value problems there exists a
non-negative solution f (x, v) satisfying (7), (9), (10). Then

(i) parameters (\, u, T ) of the Maxwellian (4) in the half-space
problem (1), (2), (4) satisfy the inequality (54);

(ii) constant fluxes (L1 , L2 , L3) in the slab problem (1)�(3) satisfy
the inequality (51) for all L>0;

(iii) parameters (\, u, T ) of the asymptotic (L � � or mean free
path tends to zero) Maxwellian (provided it exists) in the slab problem
(1)�(3) satisfy two inequalities (53).

The proof is already given above.
All our inequalities define certain domains in three dimensional spaces

of parameters (L1 , L2 , L3) or (\, u, T ). In the next section, we construct
the domains numerically for a given function .+(v) and compare them
with well-known results (see the end of Section 1) obtained by direct
numerical solution of BGK model and the Boltzmann equation.

The results can be reformulated in a stronger form, for brevity we do
this below for the half-space problem only. Let the functional

D( f )=&|
�

0
dx |

R3
dv[log f (x, v)] Q( f, f )�0 (55)

denote the total entropy production. We rewrite the inequality (54) as

2[\, T, %, .+(v)]

=�+(.+)&F(m+
1 &L1 , L2&m+

2 , m+
3 &L3)&�(M )�0 (56)

where %=uT &1�2 is proportional to the Mach number, L1, 2, 3(\, T, %) are
given by Eq. (12).

What is actually proved above is the upper estimate of the total
entropy production

0�D( f )�2[\, T, %; .+(v)], %=uT &1�2 (57)

through boundary conditions and parameters of the asymptotic
Maxwellian. We omit simple calculations which show that

2[\, T, %; \0T &3�2
0 .+(vT 1�2

0 )]=\0T 1�2
0 2 _ \

\0

,
T
T0

, %; .+(v)& (58)
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for any positive constant \0 and T0 . Therefore it is sufficient to consider
boundary conditions normalised by equalities

|
R

3
+

dv .+(v)=1�2, |
R

3
+

dv |v| 2 .+(v)=3�2 (59)

Usual boundary conditions in the evaporation�condensation problem
reduce in such a way to the normalised Maxwellian

.+(v)=(2?)&3�2 exp \&
|v| 2

2 + , vx>0 (60)

Fig. 1. Surface S defined by Eq. (65).
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satisfying conditions (59). Just this case is studied in detail in the next
section.

6. NUMERICAL RESULTS FOR HALF-SPACE PROBLEM

Elementary calculations lead in the special case (60) to equality

2(\, T, %, .+)=\% - T log
(2?eT )3�2

\
&

4+3 log 2?

2 - 2?
&F(m1 , m2 , m3)

(61)

Fig. 2. The projection of the surface S on to the p-M plane.
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where F( } } } ) is defined by formula (46) with

m1=
1

- 2?
&\% - T , m2=\T (1+%2)&1�2

(62)

m3=2 �2
?

&\%T 3�2(5+%2)

The inequality 2�0 describes an allowed physical domain of positive
entropy production in the three dimensional space of parameters \>0,
T>0, % # (&�, �). In order to compare our results with results by Sone
et al., (1) we change variables (\, %) to

p=\T, M=&-
3
5 % (63)

Fig. 3. The boundary surface S for condensation. The non-physical domain of negative
entropy production is located below and behind S.
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and rewrite 2 (61) as

2(\, T, %, .+)=8( p, T, M ) (64)

It is clear that M>0 and M<0 correspond to the condensation and
evaporation problems respectively, whereas |M | is the Mach number of the
asymptotic Maxwellian. The surface

S : 8( p, T, M )=0 (65)

is a boundary of the physical space of (\, T, M ) under additional conditions

\>0, T>0, &�<M<�, m2=\T (1+ 5
3 M2)& 1

2>0

Fig. 4. Pipe-shaped boundary surface for evaporation.
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The function 8(\, T, M ) is given by explicit formulae (except the
parameter s defined by Eq. (33)). Therefore, it is relatively simple to con-
struct the surface S (65) numerically and then to analyse it.

The resulting surface S is shown on Fig. 1 (we remind that two half-
spaces M>0 and M<0 correspond to condensation and evaporation
respectively). The surface consists of two qualitatively different parts
(M>0 and M<0) which intersect at the only point M=0, \=T=1. The
difference between the two parts is illustrated on Fig. 2 where a projection
of S onto ( p, M )-plane is shown. Figure 3 shows the condensation part
(M>0) of S in more detail. This part tends to a vertical plane M=M

*
r

0.8 for p � �. It is clear that such asymptotics corresponds to the absorp-
tion boundary conditions .+=0 for which the Mach number M becomes
a unique parameter of the problem. Thus, there is no bounded solution of
the half space problem with .+=0 and M<M

*
r0.8.

Fig. 5. The shape of S for M close to Mcr .
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Figure 4 shows the evaporation part (M<0) of S. This part of S is
closed and almost flat (look at its projection onto ( p, M )-plane on Fig. 2).
Figure 4 shows that there is no solution of the evaporation problem with
Maxwellian boundary conditions (60) if |M |>Mcr &1.6. In a smaller scale
this part (M&Mcr) of S is shown on Fig. 5.

Numerical solutions of the Boltzmann and BGK equations(1) show
that apparently M

*
=Mcr=1 (Mcr=1 was conjectured by Cercignani(7)

and supported at the linearised level by rigorous results obtained in ref. 3).
Our simple and rough approach based on entropy inequalities leads to
quite realistic rigorous estimates M

*
>0.8 and Mcr<1.6 which do not

Fig. 6. Evaporation. 3-d picture of the maximal entropy production line compared with the
numerical results by Sone.(1)
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depend on specific form of the collision integrals. This can be considered as
by product rigorous results of the present paper.

Until now all our considerations were quite rigorous (a priori
estimates based on entropy inequalities), we have studied only the surface
S of zero entropy production (65). On the other hand, we know that there
exists the evaporation curve p= p(M ), T=T (M ) (&1�M�0 in our
notations) and the condensation surface p= p(M, T ) (0�M�1) which
correspond to true solutions of the half-space problem (see the end of
Section 2). How to find them?

Fig. 7. Evaporation. T-p projection of the maximal entropy production line.
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Let us consider the inequality (57) for the total entropy production

0�D( f )�8( p, T, M )

in notations (63), (64). Suppose that &1�M�0 (evaporation) is fixed. It
is clear from Fig. 4 that there exist p= p0(M ) and T=T0(M ) such that

8[ p0(M ), T0(M ), M]=Maxp, T 8( p, T, M ), &1�M�0

Fig. 8. Evaporation. M-p projection of the maximal entropy production line.
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To prove this rigorously, it is enough to show that 8( p, T, M ) is con-
tinuous. We construct in such a way a curve

p= p0(M ), T=T0(M ), M # [&Mcr , 0], Mcrr1.6

of maximal entropy production and compare this curve (for |M |�1) with
the evaporation curve tabulated by Sone et al.(1, 2) on the basis of a large
number of numerical solutions of BGK-equation. Surprisingly, the two
curves coincide with accuracy up to a few percents! A comparison of two
curves is shown on Fig. 6, Fig. 7 ( pT-projection), Fig. 8 ( pM-projection) and
Fig. 9, where the boundary surface S is also slightly sketched. For reader's
convenience, we denote by M a ``true'' (positive) Mach number on Figs. 6�8.

Fig. 9. Evaporation. Maximal entropy production line and sections of the boundary surface.
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A similar procedure can be used for the condensation problem
(M�0) if we fix two values M>0 and T>0. Then there exist p=
p

*
(T, M ) such that

8[ p
*

(T, M ), T, M]=Maxp 8( p, T, M ), M>0

Therefore we obtain for M>0 the surface

p= p
*

(T, M )

of maximal entropy production (Fig. 10). This surface is qualitatively very
closed to the condensation surface by Sone et. al., (1) but the quantitative
difference (of order of 100) is less impressive in this case.

Fig. 10. Condensation. Maximal entropy production surface.
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Anyway, our study clearly shows that solutions of the half-space
problem (at least, for BGK-model) approximately satisfy a variational
principle of maximal total entropy production.
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